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In order to explain the diffraction of radiation on the quantum theory,
the writer proposed! an hypothesis according to which the momenta of
the radiation quanta are transferred to the diffracting material in multiples
of h/a where h is Planck’s action constant and @ is a ‘‘grating space.”
The momenta of a quantum transferred in the directions of three axes may
be written
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in which N represents the wave-length, ao, B¢ and v, the direction cosines
of the quantum before diffraction and «, 8 and v, the direction cosines
after diffraction and #;, ny and »; are whole numbers.

By an interesting application of the conception of ‘“‘sinusoidal gratings”
and of the “correspondence principle”’ Epstein and Ehrenfest? have ex-
tended this theory and have calculated the probability of the deflection
of a quantum in the direction given by Equations (1). When a very large
number of quanta strike the diffracting system, this probability represents
the intensity of the radiation deflected in the said direction.. The theory
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shows that the intensity is proportional to the square of the coefficient of
the term in the triple Fourier series, representing the density, p(x, ¥, 2),
of the diffracting material (or diffracting power), which corresponds to
the transfers of momenta given by Equations (1). The general term in
the Fourier series representing the density may be written
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A is the constant coefficient and the §’s are space phase angles. The
correspondence between Equations (1) and the terms (2) means those
equations and terms which have the same values of the n/a’s.

Epstein and Ehrenfest have shown, also, that, insofar as Fraunhofer
diffraction is concerned, the proposed quantum theory and the wave theory
reach identical conclusions, so that the above Fourier series analysis may
be regarded as deducible from the wave theory.

If we reverse the line of thought, and attempt to deduce the density,
p(x, ¥, 2), of the diffracting power (or the density of the electron distribu-
tion) in a crystal from the measured intensities of the various reflected
beams by adding together the corresponding terms in the Fourier series,
we find that these intensities do not determine the phase angles, §. In
other words, an indefinitely large number of distributions of diffracting
power will produce beams of rays of precisely the same intensities in the
same directions. It becomes necessary, therefore, to make further funda-
mental assumptions.

As one of these assumptions, we may suppose that the distribution of
diffracting power conforms to the symmetry of the crystal. This sym-
metry fixes the values of many, sometimes of all, of the §’s as being either
7/2 or zero. For example, if the crystal has three mutually perpendicular
planes of symmetry and if we take the intersections of these planes as
axes of codrdinates, the terms in the series can contain cosines only, for
they must have the same values when we reverse the algebraic sign of
either x, y, or z. 1In this case, therefore, the §’s must be odd multiples of
/2. What the multiples of 7/2 really are is immaterial, since the coef-
ficient, 4, is the square-root of a measured quantity and its algebraic sign
is not determined by the diffraction data.
~ As a second example, suppose that the crystal has three mutually per-
pendicular, two-fold axes of symmetry. In this case, if we take these axes
as the axes of coordinates, each term in the Fourier series may contain the
product of three cosines, but, umnless the codrdinate planes are also planes
of symmetry, the series must contain terms with trigonometric sines.
These sines, however, must occiir in pairs. A term cannot contain the
product of one sine and two cosines, nor can it be the product of three sines;
for the term must have the same value when we change the algebraic signs
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of any two of the three coérdinates x, y, 5. In this case, therefote, the
symmetry of ‘the crystal fixes the values. of the &’s in each term as being
either all three 7/2, or one of them 7/2 and the other two zero. '

The symmetry conditions often determine, also, the values of certain
constants A4, as being equal to each other. If the crystal possesses such
complete symmetry as that of sodium chloride, all the 4’s having the same
values of 7, nz and 73, but interchanged in any manner, must be equal to
each other. '

The permissible values of the &’s and the coefficients, 4, which must
equal each other can be deduced without difficulty from the symmetry
conditions, where the symmetry is less complete than in the above men-
tioned examples.

Neither the intensities of the diffracted beams of rays nor the symmetry
conditions determine the algebraic signs of the coefficients, 4. It follows,
therefore, that an indefinitely large number of distributions of diffracting
power not only will produce diffracted beams of the same relative intensi-
ties but will also conform to any given symmetry conditions. Sometimes
such considerations as the exact position of the point chosen as origin of
codrdinates, the fact that p(x, v, 2) should not change its sign, the amount
of diffracting material neat a given point as compared with the number of
electrons in an atom, etc., may enable us to decide which algebraic signs
should be used for the more important terms. In general, if the crystal
possesses three mutually perpendicular planes of symmetry, the inter-
sections of these planes must be a point at which the density has either a
maximum or a minimum value, and, if there is an atom at this poiat, it is
natural to assume that the value of p(x, y, 2) is a maximum there. There
may, however, be other points in the crystal at which p(x, ¥, ) has maxi-
mum values. For instance, in sodium chloride, we may siippose that the
value of p(x, ¥, 2) at the center of a chlorine atom is greater than that at
the center of a sodium atom. Further, if in a case like sodium chloride,
we take the origin of coérdinates at the center of a chlorine atom and,
therefore, at a point where p(x, y, 2) has its greatest maximum value, it is
natural to suppose that the terms in the Fourier series are all positive at
that point. Taking this point as origin of coodrdinates, this means that
all the coefficients, 4, are positive.

If we analyze a crystal such as sodium chloride in accordance with the
theory here proposed, we do not make any assumptions to the effect that
the crystal contains atoms or molecules. We simply assume that the funda-
mental principles of the theory represent the facts and that the distribution
of the diffracting power conforms to the crystal symmetry. In addition,
we assume that if we take the origin of codbrdinates at the center of the
heaviest atom, all of the coefficients in the Fourier series have positive
values. It will be shown by Dr. Havighurst in subsequent notes that the
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analysis based on these fundamental assumptions leads to the conclusion
that the diffracting power groups itself around points corresponding to
the positions of the atoms as determined by other methods of X-ray analy-
sis.

In deducing the mtensxtles of the beams of X-rays from the experimental
observations, a number of corrections must be applied as follows: (a) A
correction for the absorption of the radiation by the crystal. This in-
cludes not only the ordinary absorption but also the selective absorption,
both primary ‘and secondary, that occurs when the analyzing crystal lies
in such a position as to reflect the incident beam of rays. (b) Corrections
due to the methods employed in making the measurements. These depend
upon whether large, single crystals are used or the well-known powder
method. They also depend upon the exact way in which the intensity is
estimated, i.e., whether by the photographic or the ionization method and
in the latter case, whether or not the crystal or ionization chamber is
turned at a constant velocity through a given angle. (c¢) Corrections due
to the polarization factor. (d) Corrections due to the fact that the dif-
fraction of X-rays by a crystal, although very approximately Fraunhofer
diffraction, is not strictly speaking exactly so. The quantum theory, as
developed above, applies only to Fraunhofer diffraction, that is to dif-
fraction in which the rays ip the incident beam are parallel to each other
and, also, those in the observed deflected beam are parallel to each other.
We know that the equations deduced from the classical wave theory do
not in general represent the experimental facts observed in the scattering
of radiation. This seems to be true in all cases in which there are trans-
formations of energy to or from radiant energy. As a first approxirhation,
however, we may perhaps use the classical wave theory to deduce the
corrections to he applied for the very slight lack of parallelism in the .
beams of X-rays. The above corrections have been so thoroughly dis-
cussed from the point of view of the classical wave theory in the literature
on the subject?® that it is not necessary to enter into details here.
- Strictly speaking, the theory developed here represents the distribution
throughout the space occupied by the crystal of what we may call the time
average of the density of the diffracting power. The passage from this
to the space distribution of the time average of electron density involves
an additional assumption. If we assume that the two densities are pro-
portional to each other, the Fourier series represents the distribution in
space of the time average of the electron denmsity. It is interesting to
compare the results obtained by this Fourier series analysis, as represented
in the calculations made by Dr. Havighurst, with the results obtained by
Compton, Debye and Scherrer, Bragg, James and Bosanquet and Bijvoet
‘and Karssen (1. c.). .

Except in such cases as those above mentioned, in which the electron
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distribution is calculated, the ordinary analysis of crystals by means of
X-rays determines the positions of certain points, which are supposed to
coincide with the mean positions of the centers of the atoms. Undoubtedly
the points do coincide with the centers in simple structures. In the more
complicated structures, however, in which the analysis fixes the values of
certain parameters, the points may or may not coincide exactly with the
centers. The values of the parameters are calculated from the relative
intensities of the diffracted beams of rays, and in this calculation it is as-
sumed, tacitly or otherwise, that the diffracting power has certain space
distributions about the points. Undoubtedly, the values of the parameters
of the points can be determined with considerable accuracy, for a slight
change in them makes a great change in the relative intensities of reflections
of higher orders. The relative intensitiesof these reflections of higher orders,
however, depend upon the distribution of diffracting power about the points
and a slight change in this distribution also corresponds to a very great
change in the intensities. Hence the closeness with which the points de-
termined by the analysis lie to the actual mean positions of the atoms de-
pends to a considerable extent upon the precision with which the assumed
distribution of diffracting power agrees with its real distribution. In the
method of analysis described above the positions of the points corresponding
to maximum densities of diffracting power can be determined with con-
siderable accuracy.

TIf the crystal reflects abnormally, theoretically the Fourier integrals
should be used instead of the Fourier series.
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